首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3608篇
  免费   1071篇
  国内免费   678篇
测绘学   199篇
大气科学   507篇
地球物理   2033篇
地质学   1275篇
海洋学   630篇
天文学   75篇
综合类   306篇
自然地理   332篇
  2024年   5篇
  2023年   34篇
  2022年   104篇
  2021年   134篇
  2020年   127篇
  2019年   195篇
  2018年   169篇
  2017年   163篇
  2016年   173篇
  2015年   193篇
  2014年   242篇
  2013年   217篇
  2012年   221篇
  2011年   224篇
  2010年   210篇
  2009年   276篇
  2008年   240篇
  2007年   294篇
  2006年   264篇
  2005年   223篇
  2004年   230篇
  2003年   199篇
  2002年   170篇
  2001年   118篇
  2000年   129篇
  1999年   113篇
  1998年   93篇
  1997年   97篇
  1996年   78篇
  1995年   58篇
  1994年   67篇
  1993年   68篇
  1992年   52篇
  1991年   41篇
  1990年   33篇
  1989年   18篇
  1988年   17篇
  1987年   16篇
  1986年   11篇
  1985年   6篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   7篇
  1977年   4篇
  1971年   1篇
  1954年   5篇
排序方式: 共有5357条查询结果,搜索用时 437 毫秒
111.
2-D crustal velocity structure and vp/vs are obtained by processing and interpretation of S-wave data from Maqen-Jingbian deep seismic sounding(DSS)profile.The result shows that there exist obvious differences in 2-D S-wave velocity structure and vp/vs ratio structure along the profile.The S-wave velocities are low and vp/vs ration is high for the westem section of the profile and Haiyuan region,while they are normal for the middle and eastern sections.The changes in lithologic characters of two major anomalous zones are discussed according to lateral variation of S-wave velocity structure and vp/vs ratio structure.It is concluded that the development and occurrence of the Haiyuan strong earthquake is not only related to tectonic activities,but also to lithologic characters of the region.  相似文献   
112.
苏宏伟 《高原地震》2003,15(1):51-54
利用爆破记录的原始资料,计算出地动位移、振动速度,然后确定K、α值。根据不同建筑物的安全振动速度,给出安全爆破的最大Q(炸药量)的参考值。  相似文献   
113.
Short period surface waves, recorded during a seismic refractionsurvey in the Sannio region (Southern Italy), have been modeled to infera shallow velocity model for the area. Based on the decrease of resolutionwith depth, due to the bias on group velocity estimates arising frominterference of the Rayleigh waves with higher modes, we carried out aprocedure of fitting, with synthetic seismograms, of selected filtered traceswith a gaussian filter, having a width at half height equal to 1 Hz and acentral frequency lying in the range [1,4] Hz. We estimated the likelihoodbetween synthetic and observed seismograms by measuring their semblance.In this way we were able to infer a more refined local velocity modelcharacterized by a high Vp and Vs vertical gradient in the sedimentarycover. Two ad hoc resolution studies, based on group velocity andamplitude data respectively, indicate that the local velocity model is a goodvelocity model also for the entire studied area. The increase in the numberof available data when using amplitude information allows us to make amore selective choice in the model parameter space (Vp and Vs of eachlayer) and to solve for the Vp/Vs ratio. The inferred Vp velocity in thehalf-space is equal to 2.8 km/s. This value is in excellent agreement withthat inferred by other authors (3 km/s) by modeling P-wave travel timevs. distance. The best-fit model furnish low Vp/Vs for the sedimentarycover so indicating a high degree of the sediment's compaction in thestudied area. The inferred shallow high-velocity gradient indicates thatthe shallow sedimentary layer in the area could trap and focus the energytraveling into it.  相似文献   
114.
Crustal structure beneath the Songpan—Garze orogenic belt   总被引:2,自引:0,他引:2  
The Benzilan-Tangke deepseismic sounding profile in the western Sichuan region passes through the Song-pan-Garze orogenic belt with trend of NNE.Based on the travel times and the related amplitudes of phases in the record sections,the 2-D P-wave crustal structure was ascertained in this paper.The velocity structure has quite strong lateral variation along the profile.The crust is divided into 5layers,where the first,second and third layer belong to the upper crust,the forth and fifth layer belong to the lower crust.The low velocity anomaly zone gener-ally exists in the central part of the upper crust on the profile,and it integrates into the overlying low velocity basement in the area to the north of Ma‘erkang.The crustal structure in the section can be divided into 4parts:in the south of Garze-litang fault,between Garze-Litang fault and Xianshuihe fault,between Xianshuihe fault and Longriba fault and in the north of Longriba fault,which are basically coincided with the regional tectonics division.The crustal thickness decreases from southwest to northeast along the profile,that is ,from62km in the region of the Jinshajiang River to 52km in the region of the Yellow River.The Moho discontinuity does not obviously change across the Xianshuihe fault basesd on the PmP phase analysis.The crustal average velocity along the profile is lower,about 6.30 km/s.The Benzilan-Tangke profile reveals that the crust in the study area is orogenic.The Xianshuihe fault belt is located in the central part of the profile,and the velocity is positive anomaly on the upper crust,and negative anomaly on the lower crust and upper mantle.It is considered as a deep tectonhic setting in favor of strong earthquake‘s accumulation and occurrence.  相似文献   
115.
Practical VTI approximations: a systematic anatomy   总被引:3,自引:0,他引:3  
Transverse isotropy (TI) with a vertical symmetry axis (VTI) often provides an appropriate earth model for prestack imaging of steep-dip reflection seismic data. Exact P-wave and SV-wave phase velocities in VTI media are described by complicated equations requiring four independent parameters. Estimating appropriate multiparameter earth models can be difficult and time-consuming, so it is often useful to replace the exact VTI equations with simpler approximations requiring fewer parameters. The accuracy limits of different previously published VTI approximations are not always clear, nor is it always obvious how these different approximations relate to each other. Here I present a systematic framework for deriving a variety of useful VTI approximations. I develop first a sequence of well-defined approximations to the exact P-wave and SV-wave phase velocities. In doing so, I show how the useful but physically questionable heuristic of setting shear velocities identically to zero can be replaced with a more precise and quantifiable approximation. The key here to deriving accurate approximations is to replace the stiffness a13 with an appropriate factorization in terms of velocity parameters. Two different specific parameter choices lead to the P-wave approximations of Alkhalifah (Geophysics 63 (1998) 623) and Schoenberg and de Hoop (Geophysics 65 (2000) 919), but there are actually an infinite number of reasonable parametrizations possible. Further approximations then lead to a variety of other useful phase velocity expressions, including those of Thomsen (Geophysics 51 (1986) 1954), Dellinger et al. (Journal of Seismic Exploration 2 (1993) 23), Harlan (Stanford Exploration Project Report 89 (1995) 145), and Stopin (Stopin, A., 2001. Comparison of v(θ) equations in TI medium. 9th International Workshop on Seismic Anisotropy). Each P-wave phase velocity approximation derived this way can be paired naturally with a corresponding SV-wave approximation. Each P-wave or SV-wave phase velocity approximation can then be converted into an equivalent dispersion relation in terms of horizontal and vertical slownesses. A simple heuristic substitution also allows each phase velocity approximation to be converted into an explicit group velocity approximation. From these, in turn, travel time or moveout approximations can also be derived. The group velocity and travel time approximations derived this way include ones previously used by Byun et al. (Geophysics 54 (1989) 1564), Dellinger et al. (Journal of Seismic Exploration 2 (1993) 23), Tsvankin and Thomsen (Geophysics 59 (1994) 1290), Harlan (89 (1995) 145), and Zhang and Uren (Zhang, F. and Uren, N., 2001. Approximate explicit ray velocity functions and travel times for P-waves in TI media. 71st Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 106–109).  相似文献   
116.
Recent seismological studies have presented evidence for the existence of a layer with ultra-low seismic velocities at the core-mantle boundary at ca. 2900 km depth. We report high-amplitude, high-frequency, and laterally coherent seismic arrivals from three nuclear explosions in Siberia. With recording station intervals of 15 km, the seismic phases are readily correlated and show the presence of a thin, ultra-low velocity zone in a region where it was not previously reported. The duration and complexity of the arrivals are inconsistent with a simple core-mantle boundary and require a hitherto unidentified, kilometre-scale, fine structure in the ultra-low velocity zone. The observations may be explained by a ca. 7 km thick, two-layer, ultra-low velocity zone with exceptional low velocities, which indicate the presence of high percentages of melt (>15%), in particular in the lower part of the zone. Waveform variation implies lateral change in the thickness and physical properties of the ultra-low velocity zone with a wavelength of less than 100 km.  相似文献   
117.
The five MTMD models, with natural frequencies being uniformly distributed around their mean frequency, have been recently presented by the first author. They are shown to have the near‐zero optimum average damping ratio (more precisely, for a given mass ratio there is an upper limit on the total number, beyond which the near‐zero optimum average damping ratio occurs). In this paper, the eight new MTMD models (i.e. the UM‐MTMD1~UM‐MTMD3, US‐MTMD1~US‐MTMD3, UD‐MTMD1 and UD‐MTMD2), with the system parameters (mass, stiffness and damping coefficient) being, respectively, uniformly distributed around their average values, have been, for the first time here, proposed to seek for the MTMD models without the near‐zero optimum average damping ratio. The structure is represented by the mode‐generalized system corresponding to the specific vibration mode that needs to be controlled. Through minimization of the minimum values of the maximum dynamic magnification factors (DMF) of the structure with the eight MTMD models (i.e. through the implementation of Min.Min.Max.DMF), the optimum parameters and values of Min.Min.Max.DMF for these eight MTMD models are investigated to evaluate and compare their control performance. The optimum parameters include the optimum mass spacing, stiffness spacing, damping coefficient spacing, frequency spacing, average damping ratio and tuning frequency ratio. The six MTMD models without the near‐zero optimum average damping ratio (i.e. the UM‐MTMD1~UM‐MTMD3, US‐MTMD1, US‐MTMD2 and UD‐MTMD2) are found through extensive numerical analyses. Likewise, the optimum UM‐MTMD3 offers the higher effectiveness and robustness and requires the smaller damping with respect to the rest of the MTMD models in reducing the responses of structures subjected to earthquakes. Additionally, it is interesting to note, by comparing the optimum UM‐MTMD3 with the optimum MTMD‐1 recently investigated by the first author, that the effectiveness and robustness for the optimum UM‐MTMD3 is almost identical to that for the optimum MTMD‐1 (without inclusion of the optimum MTMD‐1 with the near‐zero optimum average damping ratio). Recognizing these performance benefits, it is preferable to employ the optimum UM‐MTMD3 or the optimum MTMD‐1 without the near‐zero optimum average damping ratio, when installing the MTMD for the suppression of undesirable oscillations of structures under earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
118.
Several recorded motions for seven bridge systems in California during recent earthquakes were analysed using parametric and non‐parametric system identification (SI) methods. The bridges were selected considering the availability of an adequate array of accelerometers and accounting for different structural systems, materials, geometry and soil types. The results of the application of SI methods included identification of modal frequencies and damping ratios. Excellent fits of the recorded motion in the time domain were obtained using parametric methods. The multi‐input/single‐output SI method was a suitable approach considering the instrumentation layout for these bridges. Use of the constructed linear filters for prediction purposes was also demonstrated for three bridge systems. Reasonable prediction results were obtained considering the various limitations of the procedure. Finally, the study was concluded by identifying the change of the modal frequencies and damping of a particular bridge system in time using recursive filters. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
119.
变参考慢度Born近似傅氏偏移   总被引:1,自引:0,他引:1  
针对常规Born近似傅氏偏移方法对于剧烈横向变速介质不能精确成像的状况而提出了变参考慢度Born近似傅氏偏移,理论上解决了任意速度变化地质模型的偏移成像问题。此外,为进一步提高复杂地层的成像精度和波场延拓算子的稳定性,对散射波场的计算公式作了改进。将改进的方法运用于盐丘模型的正演和偏移试验,并与常规Born近似偏移方法相比较,可明显看出变参考慢度Born近似傅氏偏移方法在效果上要优于后者,其处理速度横向变化的能力大大增强。  相似文献   
120.
20301 Pn arrival time data are collected from the seismological bulletins of both national and regional seismic networks. Pn travel time residuals are tomographically inverted for the Pn velocity structure of uppermost mantle beneath North China. The result indicates that the average Pn velocity in North China is 7.92 km/s, and the velocity varies laterally from ?0.21 to +0.29 km/s around the average. The approximately NNE trending high and low velocity regions arrange alternatively west-eastward. From west to east we can see high velocity in the middle Ordos region, the Shanxi graben low, the Jizhong depression high, the west Shandong uplift and Bohai Sea low, and the high velocity region to the east of the Tanlu fault. In the southern boundary zone of the North China block, except for the high velocity in the Qingling Mountains region, the velocity is generally lower than the average. Obvious velocity anisotropy is seen in the Datong Cenozoic volcanic region, with the fast velocity direction in NNE-SSW. Notable velocity anisotropy is also seen around the Bay of Bohai Sea, and the fast velocity directions seem to show a rotation pattern, possibly indicating a flow-like deformation in the uppermost mantle there. The Pn velocity variations show a reversed correlation with the Earth's heat flow. The low Pn velocity regions generally show high heat flow, e.g., the Shanxi graben and Bohai Sea region. While the high Pn velocity regions usually manifest low heat flow, e.g., the region of Jizhong depression. This indicates that the Pn velocity variation in the study region is mainly aroused by the regional temperature difference in the uppermost mantle. Strong earthquakes in the crust tend to occur in the region with the abnormal low Pn velocity, or in the transition zone between high and low Pn velocity regions. The earthquakes in the low velocity region are shallower, while that in the transition zone are deeper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号